R Reference Card

by Tom Short, EPRI PEAC, tshort@epri-peac.com 2004-11-07

Granted to the public domain. See www.Rpad.org for the source and latest version. Includes material from R for Beginners by Emmanuel Paradis (with permission).

Getting help

Most R functions have online documentation.

help(topic) documentation on topic

?topic id.

help.search("topic") search the help system

 apropos("topic") the names of all objects in the search list matching

 the regular expression "topic"

help.start() start the HTML version of help

str(a) display the internal *st*ructure of an R object

summary(a) gives a "summary" of a, usually a statistical summary but it is
generic meaning it has different operations for different classes of a

ls() show objects in the search path; specify pat="pat" to search on a

pattern

ls.str() str() for each variable in the search path

dir() show files in the current directory

methods(a) shows S3 methods of a

methods(class=class(a)) lists all the methods to handle objects of class a

Input and output

load() load the datasets written with save
data(x) loads specified data sets

library(x) load add-on packages

read.table(file) reads a file in table format and creates a data

 frame from it; the default separator sep="" is any whitespace; use

 header=TRUE to read the first line as a header of column names; use

 as.is=TRUE to prevent character vectors from being converted to facts;

 use comment.char="" to prevent # from being interpreted as a

 comment; use skip=n to skip n lines before reading data; see the

 help for options on row naming, NA treatment, and others

read.csv("filename",header=TRUE) id. but with defaults set for reading comma-delimited files

read.delim("filename", header=TRUE) id. but with defaults set

for reading tab-delimited files

read.fwf(file, widths, header=FALSE, sep="", as.is=FALSE) read a table of fixed width formatted data into a 'data.frame'; widths

is an integer vector, giving the widths of the fixed-width fields

save(file,...) saves the specified objects (...) in the XDR platform-

independent binary format

save.image(file) saves all objects

cat(...) prints the arguments after coercing to character; sep is the character separator between arguments

print(a,...) prints its arguments; generic meaning it can have different

methods for different objects

format(x,...) format an R object for pretty printing

write.table(x,file="", row.names=TRUE, col.names=TRUE, sepe="") prints x after converting to a data frame; if quote is TRUE,
unique(x) if x is a vector or a data frame, returns a similar object but with the duplicate elements suppressed.

table(x) returns a table with the numbers of the different values of x (typically for integers or factors).

subset(x, ...) returns a selection of x with respect to criteria. (typically comparisons: x[SVI < 10]; if x is a data frame, the option select gives the variables to be kept or dropped using a minus sign)

sample(x, size) resample randomly and without replacement size elements in the vector x, the option replace = TRUE allows to resample with replacement.

prop.table(x, margin=) table entries as fraction of marginal table.

Math

sin, cos, tan, asin, acos, atan, atanh-log, log10, exp

max(x) maximum of the elements of x

min(x) minimum of the elements of x

range(x) id. then c(min(x), max(x))

sum(x) sum of the elements of x

diff(x) lagged and iterated differences of vector x

prod(x) product of the elements of x

mean(x) mean of the elements of x

median(x) median of the elements of x

quantile(x, probs=) sample quantiles corresponding to the given probabilities (defaults to 0, 25, 50, 75, 100)

weighted.mean(x, w) mean of x with weights w

rank(x) ranks of the elements of x

var(x) or cov(x) variance of the elements of x (calculated on n - 1); if x is a matrix or a data frame, the variance-covariance matrix is calculated

sd(x) standard deviation of x

cor(x) correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)

var(x, y) or cov(x, y) covariance between x and y, or between the columns of x and those of y if x are matrices or data frames

corr(x, y) linear correlation between x and y, or correlation matrix if they are matrices or data frames

round(x, n) rounds the elements of x to n decimals

log(x, base) computes the logarithm of x with base base

scale(x) if x is a matrix, centers and reduces the data; to center only use the option center=TRUE, to reduce only scale=FALSE (by default center=TRUE, scale=TRUE)

pmin(x,y,...) a vector which ith element is the minimum of x[i], y[i],....

pmax(x,y,...) id. for the maximum

cumsum(x) a vector which ith element is the sum from x[1] to x[i]

cumprod(x) id. for the product

cummin(x) id. for the minimum

cummax(x) id. for the maximum

union(x,y,...) intersect(x,y,...) setdiff(x,y,...) setequal(x,y,...)

is.element(x1,el) set of "set" functions

Re(x) real part of a complex number

Im(x) imaginary part

Mod(x) modulus; abs(x) is the same

Arg(x) angle in radians of the complex number

Conj(x) complex conjugate

convolve(x, y) compute the several kinds of convolutions of two sequences

fft(x) Fast Fourier Transform of an array

mvfft(x) FFT of each column of a matrix

filter(x, filter) applies linear filtering to a univariate time series or to each series separately of a multivariate time series

Many math functions have a logical parameter na.rm=FALSE to specify missing data (NA removal).

Matrices

t(x) transpose

diag(x) diagonal

%*% matrix multiplication

solve(a,b) solves a %*% x = b for x

solve(a) matrix inverse of a

rowsum(x) sum of rows for a matrix-like object: rowSums(x) is a faster version

colsum(x): colSums(x) id. for columns

colMeans(x) id. for columns

Advanced data processing

apply(x, INDEX, FUN=) a vector or array or list of values obtained by applying a function FUN to margins (INDEX) of x

lapply(x, FUN) apply FUN to each element of the list x

tapply(x, INDEX, FUN=) apply FUN to each cell of a ragged array given by x with indexes INDEX

by(data, INDEX, FUN) apply FUN to data frame data subsetted by INDEX

merge(a,b) merge two data frames by common columns or row names

xtabs(a, b=data=x) a contingency table from cross-classifying factors

aggregate(x, by, FUN) splits the data frame x into subsets, computes summary statistics for each, and returns the result in a convenient form; by is a list of grouping elements, each as long as the variables in x

stack(x, ...) transform data available as separate columns in a data frame or list into a single column

unstack(x, ...) inverse of stack()

reshape(x, ...) reshapes a data frame between 'wide' format with repeated measurements in separate columns of the same record and 'long' format with the repeated measurements in separate records; use (direction="wide") or (direction="long")

Strings

paste(...) concatenate vectors after converting to character; sep is the string to separate terms (a single space is the default); collapse is an optional string to separate "collapsed" results

substr(x, start, stop) substrings in a character vector; can also assign as: substr(x, start, stop) <- value

strsplit(x, split) split x according to substring split

grep(pattern,x) searches for matches to pattern within x; see ?regex

gsub(pattern, replacement, x) replacement of matches determined by regular expression matching sub[] is the same but only replaces the first occurrence.

tolower(x) convert to lowercase

toupper(x) convert to uppercase

match(x, table) a vector of the positions of first matches for the elements of x among table

x %int table id. but returns a logical vector

pmatch(x, table) partial matches for the elements of x among table

nchar(x) number of characters

Dates and Times

The class Date has dates without times. POSIXct has dates and times, including time zones. Comparisons (e.g. >, <, <=, >=, ==) are useful.

Date also allows + and -. ?DateTimeClasses gives more information. See also package chron.

as.Date() and as.POSIXct() convert to the respective class; format() converts to a string representation. The default string format is "2001-02-21". These accept a second argument to specify a format for conversion. Some common formats are:

%a, %A Abbreviated and full weekday name.
%b, %B Abbreviated and full month name.
%d Day of the month (01–31).
%H Hours (00–23).
%I Hours (01–12).
%j Day of year (001–366).
%m Month (01–12).
%M Minute (00–59).
%p AM/PM indicator.
%S Second as decimal number (00–61).
%T Week (00–53); the first Sunday as day 1 of week 1.
%U Weekday (0–61); Sunday is 0.
%V Week (00–53); the first Monday as day 1 of week 1.
%y Year without century (00–99). Don’t use.
%Y Year with century.
%Z (output only.) Offset from Greenwich; -0800 is 8 hours west of.
%z (output only.) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input. See ?strftime.

Plotting

plot(x,y) plot the values of x on the y-axis ordered on the x-axis

plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)

hist(x) histogram of the frequencies of x

barplot(x) histogram of the values of x; use horiz=FALSE for horizontal bars

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)

pie(x) circular pie-chart

boxplot(x) "box-and-whiskers" plot

sunflowerplot(x, y) id. than plot() but the points with similar coordinates are drawn as flowers which petal number represents the number of points

stripplot(x) plot the values of x on a line (an alternative to boxplot() for small sample sizes)

cpplot(x,y) bivariate plot of x and y for each value or interval of values of z

interaction.plot(f1, f2, f3) if f1 and f2 are factors, plots the means of y (on the y-axis) with respect to the values of f1 (on the x-axis) and of f2 (different curves); the option fun allows to choose the summary statistic of y (by default fun=mean)
matplot(x,y) bivariate plot of the first column of x vs. the first one of y, the second one of x vs. the second one of y, etc.

fourfoldplot(x) visualizes, with quarters of circles, the association between two dichotomous variables for different populations (x must be an array with dim=(2, 2, k), or a matrix with dim=(2, 2) if k = 1)

assocplot(x) Cohen–Fり味 graph showing the deviations from independence of rows and columns in a two dimensional contingency table

mosaicplot(x) 'mosaic' graph of the residuals from a log-linear regression of the table

pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots between the columns of x

plot.ts(x) if x is an object of class 'ts', plot of x with respect to time, x may be multivariate but the series must have the same frequency and dates

tS.plot(x) id. but if x is multivariate the series may have different dates and must have the same frequency

qqnorm(x) quantiles of x with respect to the values expected under a normal law

qqplot(x, y) quantiles of y with respect to the quantiles of x

color(x, y, z) contour plot (data are interpolated to draw the curves), x and y must be vectors and z must be a matrix so that dim(z)=c(length(x), length(y)) (x and y may be omitted)

filled.contour(x, y, z) id. but the areas between the contours are filled.

image(x, y, z) id. but with colours (actual colours if is3d=TRUE) and legend (of the colours is drawn as well)

wireframe(z ~ x * y | g1 * g2) 3d surface plot

cloud(z ~ x * y | g1 * g2) 3d scatter plot

Graphical parameters

These can be set globally with par(...): many can be passed as parameters to plotting commands.

adj controls text justification (0 left-justified, 0.5 centred, 1 right-justified)
bg specifies the colour of the background (ex.: bg="red", bg="blue"...) the list of 657 available colours is displayed with colors()

bty controls the type of box around the plot, allows values: "0", "o", "*", "s", "h", "d", "n" or "f" (the box looks like the corresponding character); if bty="n" the box is not drawn

cex a value controlling the size of texts and symbols with respect to the default; the following parameters have the same control for numbers on the axes, cex.axis, the axis labels, cex.lab, the title, cex.main and the sub-title, cex.sub

col colors of the symbol and lines; use color names: red, blue, see colors() or as #'RRGGBB'; see rgb(), hsv(), gray(), and rainbow(); as for cex there are: col.axis, col.lab, col.main, col.sub

font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4: bold italics); as for cex there are: font.axis, font.lab, font.main, font.sub

las an integer which controls the orientation of the axis labels (0: parallel to the axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical)

lty controls the type of lines, can be an integer or string (1: "solid", 2: "dashed", 3: "dotted", 4: "dotdash", 5: "longdash", 6: "twodash", or a string of up to eight characters (between "0" and "9") which specifies alternatively the length, in points or pixels, of the drawn elements and the blanks, for example lty="*" will have the same effect than lty=2

lwd a numeric which controls the width of lines, default 1

mar a vector of 4 numeric values which control the space between the axes and the border of the graph of the form c(bottom, left, top, right), the default values are c(5, 1, 4, 1, 2, 1)

mfcol a vector of the form c(nr, nc) which partitions the graphic window as a matrix of nr lines and nc columns, the plots are then drawn in columns

mtext() id. but the plots are drawn by row

pch controls the type of symbol, either an integer between 1 and 25, or any single character within "*

cex an integer which controls the size in points of texts and symbols

pty a character which specifies the type of the plotting region, "s": square, "n": maximal
tck a value which specifies the length of tick-marks on the axes as a fraction of the smallest of the width or height of the plot; if tck=1 a grid is drawn
tcl a value which specifies the length of tick-marks on the axes as a fraction of the smallest of the width or height of the line (by default tcl=-0.5)
xaxt if xaxt="n" the x-axis is set but not drawn (useful in conjunction with axis(side=1, ...))
yaxt if yaxt="n" the y-axis is set but not drawn (useful in conjunction with axis(side=2, ...))

Lattice (Trellis) graphics

xyplot(y ~ x) bivariate plots (with many functionalities)
barchart(y ~ x) histogram of the values of y with respect to those of x
dotplot(y ~ x) Cleveland dot plot (stacked plots line-by-line and column-by-column)
densityplot(~ x) density functions plot
histogram(~ x) histogram of the frequencies of x
bxplor(~ x) "box-and-whiskers" plot
qqmath(~ x) quantiles of x with respect to the values expected under a theирical distribution
striplot(~ x) single dimension plot, x must be numeric, y may be a factor

qq(~ x) quantiles to compare two distributions, x must be numeric, y may be numeric, character, or factor but must have two 'levels'

sp求(~ x) matrix of bivariate plots

parallel(~ x) parallel coordinates plot

levelplot(~ x * y | g1 * g2) coloured plot of the values of z at the coordinates given by x and y (x, y and z are all of the same length)

wireframe(z ~ x * y | g1 * g2) 3d surface plot

cloud(z ~ x * y | g1 * g2) 3d scatter plot
In the normal Lattice formula, \(y \mid x \mid g_1 \mid g_2 \) has combinations of optional conditioning variables \(g_1 \) and \(g_2 \) plotted on separate panels. Lattice functions take many of the same arguments as base graphics plus also \(data=\) the data frame for the formula variables and \(subset=\) for subsetting. Use \(panel=\) to define a custom panel function (see \texttt{apropos("panel")} and \texttt{?lines}). Lattice functions return an object of class trellis and have to be \texttt{print}-ed to produce the graph. Use \texttt{print(xyplot(...))} inside functions where automatic printing doesn’t work. Use \texttt{lattice.theme} and \texttt{lset} to change Lattice defaults.

Optimization and model fitting

- **optim(par, fn, method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN") general-purpose optimization; par is initial values, fn is function to optimize (normally minimize)
- **nlm(f, p) minimize function \(f \) using a Newton-type algorithm with starting values \(p \)
- **lm(formula) fit linear models; formula is typically of the form \(response \mid termA + termB + \ldots \); use \(I(x^2) \) or \(I(x^2) \) for terms made of nonlinear components
- **glm(formula, family=) fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution; family is a description of the error distribution and link function to be used in the model; see \texttt{?family}
- **nls(formula) nonlinear least-squares estimates of the nonlinear model parameters
- **approx(x, y) linearly interpolate given data points; \(x \) can be an \(xy \) plotting structure
- **spline(x, y) cubic spline interpolation
- **loess(formula) fit a polynomial surface using local fitting

Many of the formula-based modeling functions have several common arguments: \(data=\) the data frame for the formula variables, \(subset=\) a subset of variables used in the fit, \(na.action=\) action for missing values: \(\text{"na.fail"}, \text{"na.omit"}, \) or a function. The following generics often apply to model fitting functions:

- **predict(fit, ...) predictions from \(fit \) based on input data
- **df.residual(fit) returns the number of residual degrees of freedom
- **coef(fit) returns the estimated coefficients (sometimes with their standard-errors)
- **residuals(fit) returns the residuals
- **deviance(fit) returns the deviance
- **fitted(fit) returns the fitted values
- **logLik(fit) computes the logarithm of the likelihood and the number of parameters
- **AIC(fit) computes the Akaike information criterion or AIC

Statistics

- **aov(formula) analysis of variance model
- **anova(\(\ldots \)) analysis of variance (or deviance) tables for one or more fitted model objects
- **density(x) kernel density estimates of \(x \)
- **binom.test(.), pairwise.t.test(.), power.t.test(.), prop.test(.), t.test(.): use \texttt{help.search("test")}

Distributions

- **rpois(n, lambda) Poisson
- **rweibull(n, shape, scale=1) Weibull
- **rcauchy(n, location=0, scale=1) Cauchy
- **rbeta(n, shape1, shape2) beta
- **rt(n, df) 'Student' \(t \)
- **rf(n, df1, df2) Fisher–Snedecor \(F \) \((\chi^2) \)
- **rchisq(n, df) Pearson
- **rbinom(n, size, prob) binomial
- **rgeom(n, prob) geometric
- **rhyper(nn, m, n, k) hypergeometric
- **rllogis(n, location=0, scale=1) logistic
- **rlnorm(n, meanlog=0, sdlog=1) lognormal
- **rnbinom(n, size, prob) negative binomial
- **runif(n, min=0, max=1) uniform
- **rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon’s statistics

All these functions can be used by replacing the letter \(\tau \) with \(d, p \) or \(q \) to get, respectively, the probability density \((dfunc(x, \ldots)) \), the cumulative probability density \((pfunc(x, \ldots)) \), and the value of quantile \((qfunc(p, \ldots)) \), with \(0 < p < 1 \).

Programming

- **function(arglist) expr function definition
- **return(value)
- **if(cond) expr
- **if(cond) cons.expr else alt.expr
- **for(var in seq) expr
- **while(cond) expr
- **repeat expr
- **break

Use braces \{ \} around statements

- **ifelse(test, yes, no) a value with the same shape as \(test \) filled with elements from either \(yes \) or \(no \)
- **do.call(funname, args) executes a function call from the name of the function and a list of arguments to be passed to it