VLT-I and Keck:
Infrared Interferometry from the Ground

Rafael Millan-Gabet
Caltech/Michelson Science Center

COSPAR Scientific Assembly
Beijing July 2006
Outline

- Introduction
 - Motivation for optical interferometry
 - Basic principles & observables
 - Limitations from the ground
 - Some historical background
- New Generation Large Optical Interferometers
 - Basic characteristics of the VLT-I & KI
 - Instrumentation and science drivers
 - A few science highlights from the VLT-I and KI
 - Next generation VLT-I & KI instruments
- Conclusions & On to Space ...
Why Optical Interferometry?

Coherently combine the light from 2 or more separated telescopes.

Single Telescope:
- Diameter: D
- Sensitivity $\propto D^2$
- Resolution $\propto \lambda/D$

Example:
- 45 mas
- ($D=10m$, $2.2 \mu m$)
- (and perfect AO!)

Interferometer:
- Baseline: B
- Sensitivity $\propto D^2$
- Resolution $\propto \lambda/B$

Example:
- 5 mas
- ($B=85m$, $2.2 \mu m$)

For a given technological limit to single telescope size (e.g. 30-100m for next generation ELTs), it will always be possible to build a larger interferometer providing finer angular resolution (but likely with less sensitivity).
Illustrative Example

Planet-forming (probably) disks around young stars ...

HST resolves large scale disk structure (10-100s AU); while only an optical interferometer can “probe” the inner-most disk regions (sub-AU; e.g. 5mas @ 150pc = 0.7AU).
How Does it Work?

- Form interference fringes with the light from 2 (or more) telescopes.
- Measure their amplitude (and phase); they are the amplitude and phase of the complex “visibility function”.
- The amazing fact:

\[
\hat{V}_\lambda(u,v) \iff I_\lambda(\alpha, \beta)
\]

Measured visibilities at spatial frequencies \((u,v)\) given by source-baseline geometry.

Object brightness

Credit: A. Glindemann - VLTI Tutorial
Limitations (most due to being on the ground)

- Limited \((u,v)\) coverage.
- Turbulence in Earth’s atmosphere destroys the fringe phase.

 No direct imaging

 ✓ Model fitting (a.k.a parametric imaging).

 ✓ With 3 or more telescopes, can also measure the “closure phase” (immune to atmospheric effects) and perform image synthesis (as in radio).

- Telescope size limited to atmospheric coherence area.

 \((10 - 50 \text{ cm, for } \lambda = \text{ vis - NIR})\).

 ✓ Unless each telescope is AO equipped.

- Integration times limited to atmosphere coherence time.

 \((10 - 50 \text{ msec, for } \lambda = \text{ vis - NIR})\).

 ✓ Unless a bright reference object is used to stabilize the fringes on the science target (“OPD AO”).

- Sensitivity comparison:

 ✓ Keck with AO: \(V \sim 12-14, K \sim 23-25\) (Strehl dependent, point source, 1hr)

 ✓ KI: \(K \sim 9-10\) (no phase referencing)

So, what can be done? Example: Measure the inner radius of a YSO disk

Assume a simple morphology

Use complementary data

Fit an interesting parameter (e.g. size) to the visibility data

\[
\begin{align*}
\text{Ring D} &= 2.52 \pm 0.3 \text{mas} \\
\epsilon &= 0.29 \pm 0.05 \text{ AU}
\end{align*}
\]
First generation modern interferometers had: \(B \sim 10s - 100s \) m, \(D \sim 10 - 50 \) cm. Mainly contributed single-baseline, single-wavelength (vis, NIR) measurements of galactic objects (stars of many kinds and their dusty & molecular environment).
More Observables & Advanced Modes

- Spectral information: V_λ, ϕ_λ
 - Probe different emission mechanisms, size scales, etc
 (e.g. thermal emission from different regions in YSO disks)

- Astrometry:
 - Analyze the fringe positions instead of their amplitudes
 (e.g. astrometric planet detection)

- Differential Phase:
 - Color dependent center of light shift
 (e.g. cool planet near hot star).

- Image complex morphologies via CP measurements and dense uv coverage
 (e.g. directly image terrestrial planet regions in YSO disks).

- Nulling:
 - High contrast detections (e.g. planet next to bright star)
 - A Terrestrial Planet Finder candidate technique.
KI (Keck Interferometer)

- Interferometry with the two D=10m Keck telescopes.
- B=85m baseline.
- Located atop Mauna-Kea, Hawaii.
- A NASA project to perform science in support of Navigator Program missions (exo-planet finding & characterization).
- Observing available to the community through NASA, Caltech, UC, UH, NOAO TACs.

VLTI (Very Large Telescope Interferometer)

- Interferometry with the 4 VLT Unit telescopes D=8.2m.
- Plus an array of 4 re-locatable D=1.8m outrigger telescopes.
- B=8m - 200m maximum baseline.
- Located atop Cerro Paranal, Chile.
- An ESO facility open to investigations in all areas of astrophysics.

Both obtained first fringes in 2001
KI Modes

- High sensitivity visibility amplitude measurements (V^2 mode)
 - In the near infrared (H[1.65um]&K[2.1um]).
 - In operations since June 2004.

- Nulling interferometry in N-band (8 - 12 um)
 - Suppress light from central star to reveal faint extended emission around it.
 - Key Science: characterize exo-zodi emission around Sun-like stars to inform TPF mission design.
 - Currently in commissioning & shared-risk science (expected to go operational in May 2007).

- Differential Phase
 - Multi-color fringe phase measurements between 2-5 µm.
 - Key Science: direct Hot Jupiter detection (orbital params & masses).
 - Currently in suspended development in favor of nulling mode.
KI Nulling

- Characterize exo-zodiacal emission from nearby sun-like stars. Goal: 10 SSZ (1 SSZ=x300 earth signal at 10um!)
- 2 problems:
 - Bright star.
 - Bright MIR background.
- Approach: 4 aperture architecture.
 - Null the star on long baseline dark fringe.
 - Modulate the leakage using broad short baseline fringes (interferometric chopping)
- Current performance: 100:1 nulls, 0.003 error in normalized & calibrated leakage. Need (0.0006,0.0018) for (10,30) SSZ detection.
- Now available for shared risk observations.
 - Serabyn E. et al. 2004, SPIE, 5491, 806
Current VLTI Instruments

<table>
<thead>
<tr>
<th>Spectral Bands</th>
<th>Number of Telescopes</th>
<th>Spectral Resolution</th>
<th>Limiting Magnitude (with UTs)</th>
<th>Measurement Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBER J,H,K (1.0-2.4 um)</td>
<td>3</td>
<td>35, 1500, 12000</td>
<td>~ 7, 4, 1.5</td>
<td>V(λ), CP (λ), DP</td>
</tr>
<tr>
<td>MIDI N (8 - 13 um)</td>
<td>2</td>
<td>30, 230</td>
<td>4, 2.8 (1 Jy, 3 Jy @ 12um)</td>
<td>V(λ), DP</td>
</tr>
</tbody>
</table>

- First light instrument (VINCI) now decommissioned.
- Note: sensitivity numbers are conservative, and without fringe tracking (FINITO).
- AMBER: Petrov R. et al. 2003, SPIE 4838, 924
Science Highlights

- A large variety of astrophysics topics:
 - First extra-galactic observations! (AGNs).
 - Pre-planetary disks around young stars of all types.
 - Pre-main sequence stellar masses.
 - Low mass stars diameters.
 - Gravity & limb darkening.
 - Rotating Be stars, Cepheid pulsations & distances.
 - Evolved star atmospheres, Mira pulsations.
 - Symbiotic systems and PN.
 - WR stars.
 - Asteroseismology.
 - Novae …

- Many refereed science papers (8 KI, 40 VLTI; scales with amount of sky time).

- Large amount of public data available:
 - http://msc.caltech.edu/
Active Galactic Nuclei

- NGC4151 (Seyfert 1), KI.
 - Swain et al. 2003
- NGC1068 (Seyfert 2), VLTI VINCI & MIDI.
 - A few more objects in the pipeline.
- NGC4151 NIR emission is very compact (92% flux in <0.06 pc).
- NGC1068 NIR emission compact, but less (50% flux in 0.4 pc).
- MIDI 10um sizes also require a compact (0.7pc) hot component embedded in a warm larger one (2-3pc).
- MIDI correlated flux spectra require non-standard dust, as reported in other S2 galaxies.

- These results are consistent with the unified model of AGNs (more fractional flux coming from surrounding material at larger spatial scales when central engine is partially obscured -- S2 types).

Putative central structures (accretion disk, dust torus ...) too small (~1pc) to be resolved by even the largest telescopes.
Disks around Young Stars

KI: measuring the location of the dust disk inner edge

VLTI/MIDI: revealing radial gradients in disk mineralogy

Direct heating of inner dust disk

"Standard" Disk Model – oblique disk heating

Reviewed in Millan-Gabet et al. Protostars and Planets V
Probing Disk/Wind in Hot Young Stars

Line interferometry with AMBER:

Malbet, Benisty et al. 2005
Future Developments

KI

- Sensitivity improvements.
- Spectral resolution (K' grism, 42 channels).
 - e.g. probes gas YSO disk.
- Resume DP development.
- New visibility mode at L-band (3um).
 - e.g. probe new disk regions.
- Dual star mode phase referencing (w. LGS-AO) for & μ-arcsec astrometry of faint objects (funded NSF proposal).
 - The galactic black hole.
 - Exo-planets.

VLTI

- Install dual star phase referencing facility (PRIMA).
- 2nd generation instruments:
 - VSI:
 - AMBER successor
 - 4-6 beams
 - 1 - 2.5 um
 - MATISSE:
 - MIDI successor
 - 4 beams
 - 3 - 20 um
 - GRAVITY:
 - Narrow-angle (10s umas) astrometry.
 - Design driven by galactic BH studies.
Conclusions

- New-generation large optical interferometers have begun to deliver their scientific potential by exploiting increased sensitivity & spectral resolution.
- An explosion of new results in many areas is to be expected as the full array of observables, imaging capabilities and high contrast modes are also exploited.
- Other new ground based facilities: CHARA, LBTI, MRO project ... Also, community considering merit of an “Optical VLA” (NOAO Workshop in Tucson, November 2006).
- They also provide invaluable experience for the development and exploitation of space interferometers (e.g. SIM, TPF-I/Darwin):
 - Preparatory science.
 - Learning to do μas astrometry.
 - Learning to do Nulling.
 - Learning to address many technological hurdles.
An International TPF/Darwin Workshop:
Star-Planet Interactions and Implications For Habitability
November 8-11, 2006
Pasadena, CA
Held Jointly With the “Cools Stars XIV” Conference

Sign-up for our Mailing List
http://planetquest.jpl.nasa.gov/TPF/tpf_index.cfm

Topics will include:

- TPF-C & TPF-I/Darwin Overview and Mission Status
- Stellar Properties and the Habitability of Planets
- Planets Around Low Mass Stars
- Atmospheric Signatures of Rocky and Gas Giant Planets
- General Astrophysics with TPF-C/TPF-I/Darwin
- Key Technologies: Starlight Rejection, Large Telescopes and Formation Flying

Scientific Organizing Committee

Charles Beichman, MSC/JPL
Malcolm Fridlund, ESTEC
Wes Traub, JPL
Andrea Dupree, CfA
Harry Ferguson, STScI
Heidi Hammel, Space Science Inst.
Helmut Lammer, Space Res. Inst.
Huub Rottgering, Sterrewacht Leiden
Andreas Quirrenbach, Univ. Heidelberg
Rafael Millan-Gabet (MSC), LOC co-Chair

Ken Johnston, USNO
Alain Leger, IAS
Jim Kasting, Penn State
Fabio Favata, ESA
Olivier Guyon, Subaru
Marc Kuchner, GSFC
Vikki Meadows, IPAC
Sara Seager, Carnegie Inst
Motohide Tamura, NAOJ
Geoff Bryden (JPL), LOC co-Chair