A Method to Measure Droop from Flight Data

Frank Masci, 10/16/00 (fmasci@ipac.caltech.edu)

Below is a simple method to estimate the “amount of droop” in the Si:As 24μm array on a pixel-by-pixel basis from acquired science data. First, to remind people what “droop” is: Droop is an un-usual observation where the counts (or readout) in one pixel is affected by counts in all other pixels on the array.

A simple model is to parameterise the measured counts \(DN_{m,i} \) in a single pixel \(i \) as:

\[
DN_{m,i} = DN_{t,i} + D_i, \tag{1}
\]

where \(DN_{t,i} \) are the “true, droopless” counts, and \(D_i \) is the additional factor (in \(DN \)) due to droop. Since the droop appears to be proportional to the total measured counts in all other pixels \(j \) on the array, I have parameterised the droop factor as follows:

\[
D_i = \beta \sum_{j \neq i}^N DN_{m,j}, \tag{2}
\]

where \(\beta \) is the constant of proportionality (NOT the formal droop coefficient), and \(N = 128 \times 128 \) pixels.

One immediately sees that equations (1) and (2) when combined, form an equation for a straight line with slope \(\beta \) and intercept \(DN_{t,i} \). The aim is to use an observing strategy that dithers around an extended source such as a galaxy in order to sample a large dynamic range in the total flux \(\sum_{j \neq i}^N DN_{m,j} \) falling on the array. One must also ensure that a portion of the pixels in the array don’t contain any flux from the source. In other words, one wants the measured counts in pixel \(i \) \((DN_{m,i}) \) to be due to the true counts \((DN_{t,i} \text{ - primarily only background and dark current}) \) and the “droop effect”.

With measures of \(DN_{m,i} \) and \((\sum_{j \neq i}^N DN_{m,j}) \), one can fit for \(\beta \) and \(DN_{t,i} \) to determine the droop factor (eq. 2). For robustness, one can take the median of values for \(DN_{m,i} \) amongst the different dithers. This is to account for any spurious point sources that fall in that pixel. This process can be repeated for a large number of pixels (which of course, must all avoid contamination from the extended source).

\[\sum_{j \neq i}^N DN_{m,j} \]

Figure 1: Schematic for measuring droop