Proposed IRAC Rad-Hit Detection Algorithm
Russ Laher (laher@ipac.caltech.edu)
August 24, 1999

Hidden-Layer Artificial Neural Network (HL-ANN)

- Equivalent mathematical representation:

\[
O = f \left(\theta_o + \sum_{j=1}^{N} w_{Oj} f \left(\theta_j + \sum_{i=1}^{M} w_{ji} S_i \right) \right)
\]

\[
f(x) = \left(1 + e^{-x}\right)^{-1}, \quad O = \text{output}, \quad S_i = \text{inputs}
\]
• Inputs: 5×5-pixel sub-region of image data after the following pre-processing:
 1. Bandwidth correction, DN wrap-around, etc.
 2. Flat-fielding
 3. Median-background subtraction
 4. Conversion to DN/second.

• Output: Posterior probability of rad-hit presence at center pixel of 5×5-pixel sub-region

• HL-ANN Features:
 - Nonlinear processing (not constrained by limitations of linear processing)
 - Architecture is suitable for general mapping (inputs must be bounded), and has been proven capable of learning a variety of complex patterns
 - Relatively few underlying assumptions required (does not require Gaussian-distributed noise or constant targets for optimality)

• Advantages:
 - Superior performance: Tests on 12-µm simulated WIRE data yield PFA=6×10^{-6} at PD=0.8
 (Cf. PFA=2×10^{-3} at same PD using adaptive linear-matched spike filter followed by Bayesian classifier)
 - Straightforward sliding-window, fixed-filter application
 - Not compute-intensive (relatively fast)
 - Output is probability of rad-hit presence
• Disadvantages
 - Fixed filter
 - Does not adapt to current image
 - Performance relies on generality of training set, fidelity of simulated images in training set, rad-hit model, and quality of the training
 - Long training times to calculate ANN weight-set (1-2 weeks)
 - Training method requires initial target “enrichment”

• Requires different ANN weight-set for each IRAC band

• Training image-data set
 - Relatively-crowded field (such as M38 star cluster), for less aggressiveness on point sources
 - ~50 images (different noise exemplars and rad-hit positions)
 - 1% of pixels affected by rad hits

• ANN Training and Performance Testing:
 - Standard backpropagation for iteratively computing hidden-layer ANN weight sets
 - Weights are updated after each complete pass through the training set, with gain and momentum parameters controlling the process
 - Minimizes mean-squared error (MSE) between filter output and ANN goal (1=rad hit present, 0=otherwise)
 - During training MSEs and PD/PFA performance are measured for the training set
 - PD/PFA performance on other test image-data sets is also measured
• Other possible architectural enhancements
 - Symmetrization of weights
 - Apply cross-entropy minimization for possibly faster training convergence

• Training and testing results using simpler ANN architecture (functional link net):
 - Performance: PFA=9×10^{-5} at PD=0.8
 - Trains much faster than HL-ANN (days instead of weeks)

• Next up: plan to train and test HL-ANN on simulated IRAC images